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A lifting-surface theory is presented for a cascade in subsonic shear flow by 
applying Fourier integral methods to the expressions of the perturbed flow field, 
The pressure distribution on the blade surface is determined by means of the so- 
called singularity method. Some numerical examples are presented and discussed 
in comparison with the results according to the lifting-line theory. 

A significant difference is found in the effect of compressibility between a shear 
flow and a uniform flow. In  shear flows with the maximum Mach number close 
to one, no such great local lift force is found near the sonic station as would be 
predicted by the linearized subsonic uniform flow theory. The correlation between 
the local lift and the local effective angle of attack at high Mach number span- 
stations shows a great deviation from that according to the uniform flow theory. 

1. Introduction 
In recent years considerable effort has been devoted to improve the 

thrustlweight ratio of aircraft gas turbine engines. In order to meet such a 
requirement it is desirable to increase the inlet Mach number relative to the 
compressor rotor. Therefore it is of much importance to know the compressor 
performance in high Mach number levels. The flow in the turbomachines is known 
to be essentially three-dimensional from various sources. Especially when we have 
to deal with high-speed flow and take into account the compressibility effect, it 
should be emphasized that the relative Mach number is in general non-uniform 
along the blade span. 

As is well known, for example from the problems of axisymmetric flow, 
the effect of compressibility in three-dimensional flow is considerably different 
from that in two-dimensional flow. Hence theories and experiments for two- 
dimensional cascades would be of doubtful validity in evaluating the compres- 
sibility effect on the high Mach number internal flow in the turbomachines. 

The author and his colleague conducted an experimental study (Namba & 
Asanuma 1965) on the linear cascade in subsonic or transonic shear flows. They 
have also developed a lifting-line theory for a cascade of blades in subsonic shear 
flow (Namba & Asanuma 1967, to be referred to hereafter as L). From these 
works it has been revealed that the average effect of compressibility in shear flow 
is closely associated with the so-called ‘harmonic mean Mach number’ and that 



736 Masanobu Namba 

the lift distribution can be evaluated fairly well by the lifting-line theory as long 
as the harmonic mean Mach number is below a certain value. 

However the lifting-line theory, though it takes into account the non-uniform 
downwash distribution along the span, assumes the effect of the Mach number 
upon the lift force to be similar locally at each span-station to that in two- 
dimensional flow. In other words the lifting-line theory is a quasi-two-dimensional 
theory as regards the effect of compressibility. Therefore, if the Prandtl-Glauert 
rule is applied to this theory, the span-stations attacked by Mach numbers very 
close to unity would beexpected to show great lift forces. On the other hand, if we 
apply the experimental results in uniform flows to the assumption in this theory, 
then the near-sonic span-stations would suffer from stall phenomena with a 
significant drop of the lift force. 

The author’s experiments (1965 or briefly reported also in L), however, give 
little evidence to support either of these views. According to the experiments, 
the near-sonic station shows neither such a great lift force as that due to the two- 
dimensional Prandtl-Glauert rule nor such a stall-like pressure distribution 
as would be expected from the experimental results in uniform flows. In these 
cases the static pressure distribution on the blade surface shows a sound pattern 
over the whole span similar to that in the uniform flow with the Mach number 
corresponding to the harmonic mean Mach number of the shear flow. 

In  view of the experimental information stated above it can be suggested that 
a more complete three-dimensional theory such as a lifting-surface theory is 
needed for the reasonable estimation of the compressibility effect for high sub- 
sonic or transonic shear flow. Besides it may also be suggested that linearization 
based on the assumption of small disturbances would be practically meaningful 
not only in high subsonic shear flow but also in transonic shear flow. 

From this aspect, a lifting-surface theory is presented in this paper for a 
cascade of blades in subsonic shear flow. The method of Fourier integrals used in 
L is extended to the representation of the disturbed flow field due to the pressure 
dipoles distributed on the blade surfaces. From a different standpoint, the present 
theory is an extension of the lifting-surface theory for incompressible shear flow 
given by Honda (1960,1961) to the one for subsonic shear flow. Further develop- 
ments to the transonic flow r6gime will appear in following papers. 

2. Lifting-surface theory 
2.1. Assumptions and basic equations 

As illustrated in figure 1, let a rectangular Cartesian co-ordinate system (2, y, z )  
be chosen so that the x-axis and the y-axis are parallel to the directions of the 
undisturbed stream and the blade span respectively, where x, y and z are made 
dimensionless by setting the chord length of the blade equal to unity. Here we 
shall deal with a cascade of blades spanning between two parallel walls, through 
which flows a shear flow with the undisturbed velocity vector of (U(y), 0, 0) ,  i.e. 
with the velocity varying only spanwisely. The choice of the non-dimensional 
co-ordinates mentioned above renders the distance h between the walls identical 
with the aspect ratio of the blades. In  the present theory the following assump- 



\\\\\\\\\\ 

FIGURE 1. Geometry and notation of the flow model. 
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Let the reference pressure be the arithmetical mean of the static pressures far 
up- and downstream, and let p be a small perturbation of it. Then, as shown in L, 
from the equations of continuity, motion and energy linearized by the assump- 
tions stated above, we get the following equation for the disturbance pressure p : 

where M-,  (y) is the far-upstream Mach number defined by 

M-rn(y) = ~(Y)/ (KP-~/P-~(Y)}** (2) 
Here K denotes the ratio of the specific heats of the fluid and p-, and p-, are the 
static pressure and the fluid density far upstream respectively. A detailed 
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tions are made: (i) the undisturbed flow is subsonic everywhere; (ii) the fluid is 
an inviscid and non-conducting perfect gas; (iii) the blades are thin and their 
angle of attack and camber are small; (iv) the flow perturbation is small, and the 
entropy remains constant along each streamline. 
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description of the derivation of ( 1 )  is available also in Ward (1955, p. 224). In  the 
present study, M-, ( y )  < 1 according to assumption (i). However in order for the 
linearization as (1) to be justified even a t  the stations with the Mach number close 
to  one, it is necessary to make an additional assumption that IdM-,/dyl is not 
small at  the near-sonic stations. 

The boundary conditions to be imposed on (1) are 

(3) 
(4) 

and 

[ w / U ] ~ = ~ ~ ~ ~ ~ ~  =f(x-mtsiny) for (x-mtsinyl < + (m = 0, 1, 2 2 ,  ...). 
( 5 )  

Here Ap is a finite value corresponding to the increase of pressure across t,he 
cascade. The condition (4) means that the velocity component normal to the 
walls must vanish at the wall surfaces. Finally, ( 5 )  gives the linearized expression 
for the condition of tangency of the flow to the blade surfaces, where w, t and y 
are the x-component of the disturbance velocity, the pitch-chord ratio and the 
stagger angle of the cascade respectively. Since the present analysis limits itself 
to the lifting problem, f(x) denotes the slope of the mean camber surface of the 
blade. An extensive discussion of the more general problem including the thick- 
ness contribution is to be found in appendix E. Furthermore, for simplicity we 
shall deal with the blades with uniform geometrical configuration along the span, 
and hence f (x) is a function of x only. However, no special difficulty would arise 
in solving the problem of non-uniform blade geometry, if desired. 

2.2. Expression of disturbance pressure 
As shown in L, a lifting-line can be regarded as a filament of pressure dipoles with 
the axes normal to the undisturbed stream. I n  the same way a lifting-surface can 
be considered as a sheet of pressure dipoles. Then extending the expression for p 
due to a cascade of lifting-lines given in L, we get as the solution of (1) satisfying 
(3) and (4) the expression for p due to a cascade of lifting-surfaces in the following 
Fourier integral form: 

m 

p = - C sgn(z-mtcosy) 
?n= - m 

where Y, ( y ;  a )  and P, (a )  are respectively the eigenfunction and the eigenvalue 
for the following boundary-value problem : 

d Y / d y  = 0 a t  y = 0,h. (8 )  
The eigenfunctions Yn(y;  a )  constitute a complete set of orthogonal functions 
such that 

/ o A z d y = o  for n p m .  (9) 
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As shown in L, {P,(o~))~ is positive over the range of 0 < a < 00, as long as 
M-,(y) < 1 everywhere. Therefore Pn(a) is assured to be real over 0 < a < CO, 

and the sign of Pn(a) is chosen as Pn(a) > 0, in order for the condition of p 
vanishing at infinity to be satisfied. 

The functions Fn(x;a) in (6) correspond to the coefficients in a series of the 
eigenfunctions Yn(y ;  a) into which the pressure jump Aps (x, y) across a lifting- 
surface is expanded. That is to say, 

m 

A P ~ ( ~ , Y )  z r  27~ C E”,(x;a)Yn(y;a)* (10) 
n=O 

Then the orthogonality of Y, (y; a),  (9), gives 

where the Y, (y ; cc) are normalized by 

A detailed account of the derivation of expression (6) is given in appendix D. 
As shown in L, the disturbance pressurop given by (6) consists of the contribu- 

tion of an isolated lifting-surface p ,  and those of remaining ones in the cascade 
pII and p I I I ,  which can be represented in the range 

(21 < Stcosy  (13) 

as follows: P = PI + PII + PIID (14) 

(17) 
sin (at sin y )  

cosh (/3, (a )  t cosy} - cos (at sin 7 ) .  fl,(a) = 

Once the coefficients Fn(x; 0) are determined, by the method shown later, 
then the pressure jump across the blades can be calculated by 

m 

n=O 
APE = 2n Z pn (x; 0) Yn (Y; 0 )  

and hence the pressure jump coefficient across the blades is given by 
C;, = Aps/{$cp-mM!m} 
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The local lift Z(y) and the local lift coefficient C,(y) are given by 

and 

w -  
Z(y) = I* Aps(s ,  y) do = 277 C Fko)Yn(y; 0 )  

- t  n=O 
(19) 

respectively, where 
- h 
FA? = Fn (z; 0 )  dz. 

- 1  

It is worth noting at  this stage that the flow field far downstream, i.e. in the 
Trefftz plane, can be represented in terms of Yn (y; 0), PAo) and pn (0). Theexpres- 
sions for the far-downstream flow in the present case follow at once from those 
in the previous paper L, if FAo) in the latter is replaced by Fko). For example, the 
increase of static pressure across the cascade Ap can be expressed as 

and Y p =  Y ( y; 0 ) = constant. (25)  

In conformity with the previous paper L, M!w defined by (24)  is hereafter referred 
to as the harmonic mean Mach number. 

2.3. The induced velocity 
Integrating the equation of motion, we get the x-component of the induced 
velocity on the (z, y)-plane in the form 

I np cos r/{t (p cos2 y + sin2 r)} 
&rpF’ coth (&3E)t cos y )  for 

for n = 0, 

n = 1,2,  . . . where Tn= { 
and YLO’(y) f Y,(y;O),  pp  = P , ( O ) ,  F?O)(s) 3 Pn(z;O). (28) 
Making z+ + co in (26) gives the expression for the upwash in the Trefftz plane 
as follows: a b] = - 2 T, pio) YiO)(y)/{~p-~ M!a (y)). (29) 

z=o n=O 

In  the case of the lifting-line theory, the fact that the induced velocity at  the 
lifting-line is just one-half of that in the Trefftz plane allows us to express the 
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upwash at  the lifting-line in terms of YLO), pio) and PAo). Therefore it was enough 
for us to solve (7) only for a = 0. However in the case of the lifting-surface 
problem, we must find the solution of (7) for every real value of a over 0 < a < co, 
because it is necessary to know the induced velocity over the whole blade surface 
and therefore to evaluate %he Fourier integral in the second term in the bracket 
[ ] on the right-hand side of (26). For this purpose let us rewrite (26) in a form 
suitable for numerical calculation. 

The function Yn (y; a)  for any real value of a can be expanded into a series such 
that a 

Yn(y;a) = X Bn,m(a)E’(y) ( n = O , 1 , 2 , * * * ) ,  ( 30) 
m=O 

where the spectrum function Bn,m(a) can be determined for example by the 
method shown in appendix A. Then, substituting ( l o a )  and (30) into (11) and 
taking into account the orthogonality of YAo), we find that Pn(x;a) can be 
expanded in a series with the same coefficients as in (30), i.e. 

m 

Fn(z;a) = Bn,,(a)FAo)(x) (n = 0 ,1 ,2  ,... ). (31) 
m=O 

Then after some calculations as shown in appendix B, we get the expression of 
the upwash distribution on the blade surface in the following refined form: 

where (33) 

2.4. Derivation of integral equation 
The combination of (32) with the boundary condition (5) yields the following 
integral equation for FAo) (z) : s* % knYio)+ Z Dn,m(z-t)YE) F,?)(k)df=f(x) .  (36) 

If we multiply (36) by Yho)(y) (m = 0,1,2,  . . .) and integrate it with respect to y 
over the range (0, A) ,  using the orthogonality of Y$)(y), then (36) reduces to a set 
of integral equations as follows: 

1 m 
- 

K P - ~ M -  w - t n=O m=O 

1 z [ ~ ~ s ~ , m + D , , m ( ~ - t ) l ~ ~ o ’ ( t ) ~ ~  = - f ( z )E)  (m =0 ,1 ,2 ,  * - a ) ,  

(37) 

where 1 1 for n = m, 

0 for n p m, sn,m = { 
. .  

(38) 

YA - O’ - - Y$)(y)dy. (39) 
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2.5. Reduction to linear equations 

As seen in (IOU), the pressure distribution Ap,(x,y) is expressed as an infinite 
series. In  numerical work, however, w0 are obliged to conduct calculations by 
omitting the coefficients FAo)(x) of order greater than some specific n. If we 
neglect the higher-order terms than n = N ,  then we get a set of a finite number of 
integral equations for FYo)(x) (n = 0,1 ,2 ,  . . ., N - 1). 

The chordwise variation of Aps(x,y) depends upon the Fio)(x), which have to 
be determined from (37). The straightforward inversion of the integral equations 
without any approximation seems in general impossible. Therefore in order to 
solve (37) we have to rely upon some method of getting approximate solutions. 
The method preferred in this case is the well-known Glauert trigonometric series 
substitution, which has been applied with success to the problems of a cascade 
in uniform flow, for example by Scholz (1950). Thus, introducing angle variables 
0,  q5 defined by 

we expand each of FAo'(x) into the following trigonometric series: 
= ;coso, 6 = ices$ (0 G e,$ G n), (40) 

Fko)(x) = ~ p - ~  [ag (An,o tan $7 + An,l  sin 8 + An,2 sin 28 i- . . .) 
+ €(En,,  tan 40 + En,l sin 8+ En,, sin 2B+ ...)I, (41) 

where ag and B are, as pictured in figure 1, the angle of attack and the maximum 
camber respectively. Therefore the slope of the blade mean camber surface f (2) 
can be represented as -f(x) = C X * + E ~ ( X ) .  

The trigonometric series (41) is assured to contain the appropriat,e singularity 
a t  the leading edge as well as to satisfy the Kutta-Joukowsky condition at the 
trailing edge. The experimental results (Namba & Asanuma 1965) suggest to us 
that a series expansion like (41) is suitable also for a cascade in shear flow as 
long as the flow is subsonic everywhere. Another reason why this method is 
advantageous is that the definite integral with respect to q5 can be evaluated in 
closed analytical form and that from a practical standpoint the pressure dis- 
tribution is evaluated with satisfactory accuracy only from the f i s t  few terms 
in the series (41) as long as it is concerned with conventional thin blades. 

Substituting (41) into (37), integrating with respect to $ over (0, T) and separat- 
ing it into the components of the angle of attack and the camber, we get the 
following two sets of linear algebraic equations for An,k and En,, (n, k = 0, 1, 
2, . . .) respectively: 

m m  

n=O k = O  
C En,kGm,n,k(8) = F2)0,((gcosO) (m = 0,1 ,2 ,  ...). (44) 

Analytical expressions of Gm,n,k (0) are given in appendix c. 
As mentioned above, it is permissible from a practical point of view to cut the 

trigonometric series (41) down to one with a finite number of terms. Then we can 
compute approximate values of the remaining coefficients by satisfying (43) and 
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(44), or in other words the boundary condition (5), at  the same number of discrete 
points along the blade chord as the retained terms. In  order to get as good an 
approximation as possible, it  seems advantageous to apply the method used, for 
example, by Scholz (1950) or Schlichting (1955), which is to choose the repre- 
sentative points a t  the three-quarters station of each chord section formed by 
dividing the blade chord equally into as many sections as there are terms retained 
in the series. That is, if we are to satisfy (43) and (44) at  M points along the chord, 
then the co-ordinates of these points are given by 

x,=gcosB,= ( l /M)(n+$)-* (n=O,1,2,  ..., M-1). (45) 
Then, if we retain N terms in the series (loa) and M terms in the series (41), 

we get two sets of simultaneous N x M linear equations for unknowns A,,k and 
En , , (n=0 ,1 ,2  ,..., N - l ; k = O , l , Z  ,..., M-l)respectively,i.e. 

N - 1  M - 1  

n=O k=O 
Z C An,kGm,n,k(ei) = y$?), (46) 

Once the coefficients An,k and En,, are determined numerically, then the 
pressure jump coefficient C;, can be calculated by 

M-1 

k=l  

M - 1  
E,,,tan$B+ k = l  C En,ksink~)]  (48) 

2.6. Application to uniform flow and incompressible shear $ow 
The present theory can be regarded as a generalized subsonic cascade theory 
including as special cases a cascade in subsonic uniform flow and one in incom- 
pressible shear flow. Therefore its application to these cases already studied will 
be instructive and useful for justification of this theory. 

Subsonic unijorm flow. A simple example of the procedure presented in this 
paper is provided by considering the solution for M-, (y) = M, = constant over 
0 6 y 6 A. In this case the solution of (7) for a = 0 under the boundary condition 
(8) becomes 

y,O) = M o ,  Yi0) = 42M0cos(nny/h) (n = 1,2,  ...), (50) 
p:) = nn (n = 0,1,2, ...). (51) 

Y,,, = Yio)Yko)dy = M:6,,, ( 5 2 )  

pn(a) = ,/(n2n2+pa2) (p = 1 -Mi), (53) 
(54) 

Therefore we have 
- 

0 

and hence the matrix (A 5 )  reduces to a diagonal matrix from which we get 

% m (a) = an,m* 
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Then equations (34) and (35) degenerate to 

R , m  = an ,m 41.1 (55) 
(56) Hn,m (a) = a n , m  [4(1. + n2+/a2) {Cn (a) + 1) - 41.1 

respectively, and it follows from (C 1) that 

Gm,n,k(8) = 0 for n + m. 

Finally, considering (57) together with 
(57) 

which follows from (50), we find that (46) and (47) reduce to the following systems 
of M linear equations for Ao, and Eo,k ( k  = 0, 1 ,2 ,  . . . , M -  1) respectively: 

M-1 z A0 kGO,O,k(8) = 4 0 ,  
k=O 

(59) 

Especially in the case of an isolated blade (t  = m), we get from (16) and (27) 

To = 0 ,  C0(a) = 0 
and hence from (55), (56) and (C 2) 

Go,o,o(@ = dI., GO,O,l(~) = q h c o s %  G0,0,2(@ = n4Pcos20. (62) 
Consequently, if a parabolic arc blade with b (Q cos 8)  = 4 cos 8 is considered, the 
solutions of (59) and (60) are obtained straightforwardly as 

Ao,o = nMo/,/,u, Ao,n = 0 for n = 1,2,  ..., 
Eo,o = 0, Eo,l  = 4nM0/Jp, Eo,n = 0 for n = 2,3,  ..., (63) 

(64) 
(65) 

and therefore from (48), (49) and (20) we get 

C, = 4 (ag tan Q8 + 4~ sin 8)/,/,u, 
c, = w a g  + 24/4P, 

which completely agree with the two-dimensional thin aerofoil theory based on 
the Prandtl-Glauert rule. 

Incompressible shear $ow. The solution for an incompressibIe shear flow with 
prescribed velocity distribution of U ( y )  can be obtained by replacing H!, by 
U2(y)/cZW, where c! ,  = Kp-,/p-, and taking the limit c!,-+m with U (y) fixed. 

-mYAo), A;,k = C-cnAn,k, E L , k  = c-mE, ,k ,  (66) Ifwe Put YCO), = 
n 

then ( Q ) ,  (43) and (44) indicate that YAO)’, A& and EL.k are independent of 
c-w. Considering that FAo) = O(CZ&) as c-,-+to, we find that as c-,-+m the 
matrix (A 5 )  again reduces t o  a diagonal matrix and hence we get 

pfl (a) = J ( p p  + or2), 
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From the above relations it follows that 

(68) G n t , n , k ( ~ )  = 0 for n =I= m. 

Hence a set of N x M linear equations (46) or (47) degenerates to N sets of M 
linear equations as follows: 

M-1 
EA,kGn,n,k(OJ =T~~)’b(+cosB,) 

k=O 

(70) (n = 0 ,1 ,2  ,..., N-1; i = 0 ,1 ,2  ,..., M-1) .  

Comparison of (69) and (70) with (46) and (47) indicates that contrary to the case 
of compressible shear flow the nth components and ECk in this case 
become independent of those of order other than n. 

3. Numerical examples 

The Mach number profile adopted is of the same type as that in L, i.e. 
3.1. Specijication of flow model and remarks on numerical computation 

M-,(Y) = MoexP (aylh). (71) 

Therefore YAo) and pz’ are given by 
- 

Y(O) 0 = MT, = M0{2a e2a/(e2a - l)}*, 

YAo) = 4 2  M, a (a2 + n27r2)-i e2au’* 

p p  = 0,  

p p  = (az+n27r2)*/h (n  = 1,2,  ...). 

In this paper numerical examples are shown for three different Mach number 
levels with the shear parameter a = h(dM-,/dy)/M-, held constant at a value 
of 1.0, namely (i) Mo = MI = 0,  (ii) No = 0.270, MI = 0.734, (iii) Mo = 0.367, 
Hl = 0.998. Here Ml = M-, ( A )  = &foea and the case (i) means an incompressible 
shear flow. 

The blade profiles adopted are a flat plate and a parabolic arc profile, i.e. 
b(x) = 4cosO. 

In  the numerical work solving (46) and (47) we set N = 10 and M = 3, which 
are considered to give a satisfactory approximation from a practical standpoint. 
Solving a set of linear equations (46) or (47) for 30 unknowns is not hard work 
for a modern high-speed electronic computer. Rather, a greater part of the time 
is spent in computation of the Fourier integrals in Gm,n,k(13J given by (C 2). 
Since the integrands contain the trigonometric and the Bessel functions, the 
numerical integration requires a large number of representative abscissae of a, 
for each of which pn(a)  and B,,(a) must be computed as eigenvalues and 
eigenvectors of a 10 x 10 matrix. 
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In  general the H,,,(a) in the integrands are found to have a finite number of 
zero points for 0 < a < co and they are of the order of a-2 for large a. Besides, 
since 

the integrands are of the order of a-2.5 for large a. 

integral by a finite series summation such that 
The method of numerical integration adopted is to approximate an infinite 

6 

i= 1 
where In = OIT x h(aZ’(nf<$)>Wi, 

and & and wi are respectively the argument values and the weights for the six 
point Gaussian quadrature formula. The integration interval aT is adopted as 
aT = 4n/( 1 +COB 02). The number of zero points of the integrands to be contained 
in the interval aT is at  most two in this case where M = 3. The summation is 

~ 

K 

n= 0 
conducted until the last term I K  becomes so small that lIK1/l Z I,( < lop3. 

It is confirmed that application of this method to a cascade’of flat plates in a 
uniform subsonic flow gives an error less than 0.5 yo in comparison with the 
mothod of conformal mapping. The computation was conducted on the elec- 
tronic computer HITAC 5020E at the Computing Center of the University of 
Tokyo. The time consumed in computation was about 200 seconds for each case. 

3.2. Remarks on the lifting-line theory 
As mentioned previously, the purpose of this paper is to make clear the com- 
pressibility effect by a complete three-dimensional theory, that is, the lifting- 
surface theory. For this purpose it will be instructive to make a comparison 
between the lifting-surface theory and the lifting-line theory given in L. The 
latter is considered to be incomplete as a three-dimensional theory as far as the 
compressibility effect is concerned. The most convenient factor for elucidating 
the difference between the theories is the derivative of the local lift coefficient 
with respect to the local effective angle of attack defined by 

K = (aQ,/a~o),o=o = c,(Y)/ao,  
where a, is the effective angle of attack defined as 

a 0  = a-c.3 + Q [ W r n / ~ l z = O  (73) 
and a_, is the angle of attack measured from the zero-lift angle. The lifting-line 
theory consists essentially in assuming K (y) to be equal to the value in the two- 
dimensional flow of the Mach number corresponding to M-, ( y ) ,  that is, K in the 
lifting-line theory is given by 

where the superscript (20)  denotes the two-dimensional flow condition. Here 
K@D) is calculated by using the two-dimensional linearized cascade theory 
including the Prandtl-Glauert rule. 

K = K(”)(M-,(y)), (74) 
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3.3. Discussion on the numerical results 
Figures 2, 3 and 4 show examples of the spanwise distributions of the local lift 
coefficient C,, the uptvash in the Trefftz plane [ W , J U ] ~ = ~  and K defined by (72) 
respectively, where CtT) used for normalization denotes the lift coefficient in 
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FIarmE 2. Spanwise distribution of the local lift coefficient in shear flows of a = 1.0. 
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(b)  An isolated flat plate of A = 2.5. (c) A cascade of flat plates o f t  = 1.0, 7 = 60" and 
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FIGURE 3. Spanwise distribution of the z-component of the induced velocity on the wake 
surface far downstream in shear flows of a = 1.0. ~ , lifting-surface theory ; - - -, 
lifting-line theory. (a)  An isolated flat plate of h = 5.0.  ( b )  An isolated flat plate of h = 2.5. 
( c )  A cascade of flat plates of t  = 1.0, y = 60" and h = 2.5. ( d )  An isolated parabolic arc 
blade of h = 2.5. 
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FIGURE 4. Spanwise distribution of the derivative of the local lift coefficient with respect 
to the local effective angle of attack in shear flows of a = 1.0. __ , lifting-surface 
theory; -- -, lifting-line theory. (a) An isolated flat plate of h = 5.0. ( b )  An isolated flat 
plate of h = 2.5. (c )  A cascade of flat plates oft = 1.0, y = 60" and h = 2-5. (d) An isolated 
parabolic arc blade of A = 2.5. 
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two-dimensional incompressible flow. Also presented for comparison with the 
dotted lines are the corresponding distributions according to the lifting-line 
theory. Examples of the chordwise distributions of pressure at  three different 
span-stations are demonstrated in figures 5 ,  6 and 7 for three different cascade 
conditions. The dotted lines in these figures are the chordwise distributions cal- 
culated according to the lifting-line theory, by which we mean those in the two- 

X X X 

FIGURE 5. Chordwise distribution of the pressure coefficient for an isolated flat plate of 
h = 2.5 in shear flows of a = 1.0. ___ , lifting-surface theory; - - -, lifting-line theory. 
(a) M ,  = M ,  = 0 (incompressible shear flow). (6) M ,  = 0.270, M ,  = 0.734. ( c )  M ,  = 
0-367, M ,  = 0.998. 

X X X 

FIGURE 6. Chordwise distribution of the pressure coefficient for a cascade of flat plates of 
t = 1.0, y = 60' and A = 2.5 in shear flows of a = 1.0. ___ , lifting-surface theory; 
--- , lifting-line theory. (a)  M ,  = M ,  = 0 (incompressible shear flow). ( 6 )  M ,  = 0.270, 
M ,  = 0.734. (c) M ,  = 0.367, MI = 0.998. 

dimensional flows at  the Mach number corresponding to the local ones in the 
undisturbed shear flow as well as at  the angle of attack corresponding to the 
local effective angle of attack based upon the lifting-line theory. 

As seen from figure 4 the validity of the assumption in the lifting-line theory, 
i.e. quasi-two-dimensionality in the effect of compressibility, becomes poorer as 
the Mach number Ievel increases and as the aspect ratio h decreases. As far as 
the examples demonstrated in figure 4 are concerned, the lifting-line theory 
seems more valid for the cambered isolated blade than for the isolated flat plate. 
It would be unwise, however, to be hasty in generalization. In  fact as regards the 
chordwise pressure distributions in figures 5, 6 and 7, the difference between the 
theories seems largest for the cambered blade. The reason why such a large 
difference in C, distribution between both theories yields rather small influence 
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on the differences in the integrated values such as K or cl, is that the disturbance 
pressure on the cambered blade can change its sign along the chord at a lower 
angle of attack. 

Another striking feature of the results is the relatively small difference in the 
local lift distribution between the theories. The reason for this will be obvious 
from the downwash distributions in figure 3. The larger values of K at the higher 
Mach number span-station according to the lifting-line theory is associated with 
stronger trailing vorticity which in turn brings about the stronger downwash. 
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FIGURE 7. Chordwise distribution of the pressure coefficient for an isolated parabolic arc 
blade of h = 2.5 in shear flows of a = 1.0. - , lifting-surface theory; - - -, lifting-line 
theory. (a)  M ,  = M ,  = 0 (incompressible shear flow). (b )  M ,  = 0.270, M ,  = 0.734. 
(c) M ,  = 0.367, M I  = 0.998. 

Because the downwash makes the effective angle of attack decrease, the net 
balance of the lift force at  the higher Mach number station due to lifting-line 
theory shows no extremely large difference from that according to the lifting- 
surfaco theory. Whatever the reason, one may conclude that the lifting-line 
theory can safely be used for the reasonable prediction of the lift distribution 
as long as the maximum Mach number of the shear flow is lower than about 0.8. 

In  general, however, the lifting-line theory gives significant error at  near- 
sonic stations. Here it should be emphasized that the lifting-surface theory gives 
no such great value of K or C, at  near-sonic span-stations as would be expected 
from the two-dimensional Prandtl-Glauert rule. This result suggests to us that 
the relatively small lift force at near-sonic span-stations in shear flow gives less 
liability of occurrence of shock waves in shear flow than in uniform flow and that 
a flow pattern according to the three-dimensional linear theory can physically 
exist even in high subsonic or transonic shear flow. As stated earlier in this paper 
the author's (1965) experimental results may provide a justification of this 
conjecture. 

4. Conclusion 
A lifting-surface theory for a cascade.of blades in subsonic shear flow has been 

developed. Numerical examples are provided and compared with the results 
according to lifting-line theory. 
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The dependence of the local lift force upon the local Mach number at  near- 
sonic span-stations in a shear flow shows a great deviation from that according 
to the uniform flow theory which is applied to the lifting-line theory. In shear 
flows no extremely great lift force appears at  near-sonic span-stations even 
within the scope of the linearized theory. 

As far as the effect of non-uniform Machnumber upon the spanwise distribution 
of the lift force is concerned, the evaluation according to the lifting-line theory 
gives no significant error in comparison with the lifting-surface theory if the 
maximum Mach number of the shear flow is below about 0-8. 

The chordwise distribution of the surface pressure at  high subsonic span- 
stations in a shear flow deviates significantly from that in the corresponding 
two-dimensional flow with the angle of attack corrected according to the lifting- 
line theory. 

The author wishes to express his gratitude to Prof. T. Asanuma and As- 
sociate Prof. Y. Tanida of the Institute of Space and Aeronautical Science, 
University of Tokyo, as well as to Profs. T. Okazaki and J. Kondo of the 
Department of Aeronautics, University of Tokyo, for their valuable discussions 
and encouragement. 

Appendix A. Solution of (8) and (9) 
As is shown in L, the solution of the boundary-value problem (8) and (9) for 

a = 0,  i.e. Yio) and /32’, can be obtained in analytical forms when the basic shear 
flow has some special Mach number profiles, for example an exponential or a 
linear profile. Then, assume that YAo) and /32) are known and represent Y for 
any real value of M: in terms of an infinite series such that 

m 

n=O 
y = c Pn(4 YL0’(y). 

Substitution of (A 1) into (8) gives 
1 m 

Multiplying (A 2) by Y$), integrating with respect to y from 0 to h and taking 
into account the orthogonality of YA:), we get simultaneous homogeneous linear 
equations for B,(a) (m = O,1,2, ...) as follows: 

00 

Bm(a)(/3:’2-a2- /3 )+a2  Bn(a)Fn,, = 0 (m = O,1,2, ...), (A 3) 
n=O 

where 

Therefore /3i/a2 (n = 0, 1 ,2 ,  . . .) are obtainable as the eigenvalues of a symmetric 
infinite matrix given by 

... ... ... . . . I  
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and [Bn,o (a), Bn,l (a), Bn,2 (a), . . .] (n = 0,1,2, . . .) aro the corresponding eigen- 
vectors. Using Bn,m(a), we can get the eigenfunction Y, (y; a) for any real value 
of a as 

m=O 

In order to determine Bnp,(a) and Pn(a) numerically, it is necessary, in general, 
to use a finite matrix as an approximation to (A 5). 

Appendix B. Derivation of (32) 

(26) by I ,  and dividing the infinite integral in I into three parts, we get 
Denoting the second term in the square bracket [ ] on the right-hand side of 

Examination of the matrix (A 5) reveals that 

and hence from (30) and (31) 

as a+m, yn (y; a) Yn (y; co) + 0 (a-2) 

Pn(x; a) N i?, (x; co) + 0 (a-2) 

where qn, B,,,(co), Y, (y; co) and Fn(x; co) are finite values. Furthermore from 
(16) Cn(a) N -2exp(-2Pn(a)tcosy) N -2exp(-2qnatcosy) 
as a -+ 00. From this limiting behaviour, it  is found that the Fourier integrals in 
the first and second terms on the right-hand side of (B 1) converge uniformly with 
respect to z. As to the Fourier integral in the third term, we can apply Abel's 
summation theorem to it as follows : 

48 Fluid Mech. 36 
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Then, substitution of (30) and (31) into (B 2) gives after some arrangement 

where H,, (a)  and R,, are defined by (34) and (35) respectively. Using the above 
expression, we finally get the expression (32). 

Appendix C .  Expressions of a,, n, k( 8) 
Equations (43) and (44) are obtained by defining Gm,n,k (8 )  as 

(k = 1,2, ...). 

(C 1) 

G , , , , , ~ ( O )  = 2S [T,S,,,+ ~ ~ , , ( + c o s ~ - * c o s $ ) ]  tan++sin$d#, 

G ~ . ~ . ~ ~  (0) = z /  [T, &,,, + D,,, (8 cos 8-  + cos 411 sin 1c4 sin 4 

The expression of D , ,  (x - 5) given by (33) indicates that conduction of integra- 
tion with respect to $ in (C l) needs evaluation of some definite integrals as 
follows : 

1 =  

0 

1 n  

0 

First, 

Secondly, 

grr for k = 1, 1 0 for k = 2)3,  .... son sin k 4  sin 4 = 

tan+$ sin 4 d$ = rr, j o  cos e - cos 4 
sink$ sinq5d4 = ncosk0, s 0 c o s 8 - c o s ~  

where the well-known formula 

= cosk4 rr sin k0 a$6 = ~ s ~ o s e - c o s ~  sin8 ’ 
is used. 

Finally, consider the formulae (Watson 1944) 

m 

sin(+acos+) = 2 2 (-1)ncos(2n+1)q5J,,+,(&a), 
n=O 

W 

cos (Qa cos $6) = en ( - 1jncos 2n4 J,, (Qa), 
n=O 

1 for n. = 0, 
2 for n = 1,2,  ..., where e n =  { 

and Jn is the Bessel function of the first kind of order n. 
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Then we have 
r n  
J tan +$ sin {a (+ cos 8 - + cos $11 sin 9 

0 
= n- [sin (+a cos 8) Jo(Qa) + cos (+a cos 8) J1 (+a)], 

r n  

Appendix D. Expression of disturbance pressure due to a pressure 
dipole 

Here we consider an elementary solution for a single pressure dipole of unit 
strength with its axis in the z-direction. The disturbance pressure p due to such 
a pressure dipole placed at  a point (< ,T ,  0 )  in a basic subsonic shear flow as shown 
in figure 1 must satisfy ( l ) ,  except at  the singular point ( E ,  q , O ) ,  as well as the 
boundary conditions (4) and 

p+O as x2+z2+co. (D 1)  

p+sgnz6(x-<)d(y-r) as z+ & 0. (D 2) 

Furthermore the singularity at  (<, 7,O) should be of such a character that 

Applying the method of separation of variables to (l) ,  we can get the required 
solution in the following Fourier integral form : 

3) 

Since Yn(y; a)  and /?,(a) are respectively the eigenfunction and the eigenvalue 
for the Sturm-Liouville type boundary-value problem (7) and (8), it is evident 
that (D 3) satisfies (4). As is shown in the reference L, pi(.) is positive for 
0 < a < 03, when the basic flow is subsonic everywhere, and here pn (a) is chosen 

48-2 
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as positive. Then considering that Yn(y; a) is bounded for 0 < a < 00 and that 
each of /3, (a)/a tends to a finite value as a -+ 00, we find 

for z $. 0. Consequently it is confirmed that (D 1) is satisfied. Furthermore, since 
the delta function S(x  - 5) or S(y - 7) can be represented formally as 

the condition of singularity (D 2 )  is also satisfied. 
An expression of p due to a sheet of pressure dipoles, i.e. a lifting-surface with 

t'he dipole strength - &Aps (x, y) distributed in the region - Q < x < +7 0 < y < A,  
z = 0 can easily be derived by integrating the elementary solution (D 3) as 

m 1 

W 

- - - s g n z y q  cos - 5)) c exp ( -P, (a)lzl  %(5; a) yn (Y; a)  cia, 
0 n=O 

(D 4) 

Then an expression for the cascade in figure 1 can be constructed from infinite 
where Fn (5; a) is defined by (1 1). 

summation in the form (6). 

Appendix E. Consideration of the effect of the blade thickness 
Let a blade profile z = zo(x, y) be given by 

azo/ax = f@, y) * &g (x, y), 
where g (x, y) denotes the contribution of thickness part to the slope of the blade 
surface. The fact that the effect of blade thickness is equivalent to that of 
pressure dipoles with axes parallel to the main flow suggests to us that the 
disturbance pressure p ,  due to the thickness contribution is represented by 

Then, the x-component of the velocity induced by the thickness effect is expressed 
at z = 0 as 



Lifting-surface theory for cascade of blades 

from which it is known that G, (2; a )  is associated with g (x, y) by 

757 

It should be noted that the first term on the right-hand side of (E 2) is the 
contribution of the blade a t  z = 0 and the second term is that of the other blades 
in the cascade. The effect of the second term which contributes to changing 
incidence angle must be taken into consideration, when F,(x; a), i.e. the strength 
of the pressure dipoles with axes normal to the main flow which are associated 
with the camber and the angle of attack, is determined from the tangency 
condition on the blade mean camber surface corresponding to the boundary 
condition (5). More detailed study on the evaluation of the thickness effect is 
left to future research. 
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